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ABSTRACT
It is well-known that artificial neural networks have the ability to learn based on 
the provisions of new data. A special case of the so-called supervised learning is 
a mutual learning of two neural networks. This type of learning applied to a spe-
cific networks called Tree Parity Machines (abbreviated as TPM networks) leads 
to achieving consistent weight vectors in both of them. Such phenomenon is called 
a network synchronization and can be exploited while constructing cryptographic 
key exchange protocol. At the beginning of the learning process both networks have 
initialized weights values as random. The time needed to synchronize both networks 
depends on their initial weights values and the input vectors which are also ran-
domly generated at each step of learning. In this paper the relationship between the 
distribution, from which the initial weights of the network are drawn, and their com-
patibility is discussed. In order to measure the initial compatibility of the weights, 
the modified Euclidean metric is invoked here. Such a tool permits to determine the 
compatibility of the network weights’ scaling in regard to the size of the network. 
The proper understanding of the latter permits in turn to compare TPM networks of 
various sizes. This paper contains the results of the simulation and their discussion 
in the context of the above mentioned issue.

Keywords: neural networks, neurocryptography.

INTRODUCTION

Most of the stored or transmitted data often 
carry sensitive information and therefore it is vi-
tal to protect them from potential threats [6]. Such 
a protection relates, among all, to data integrity 
or authorization of access and confidentiality of 
communication. One of the main goals here is to 
transfer the information so that it is impossible 
to decipher it by any unauthorized and unwanted 
person. In order to achieve this objective one re-
sorts to various cryptographic algorithms [17]. 

The message containing information is here 
encrypted from the plain text to the ciphered text. 
According to the Kerckhoffs’s principle [14], 
most of the converting algorithms incorporate 

additional input, i.e. the so-called cryptographic 
keys [1]. In this approach, the keys generating, 
distributing and storing methods become equally 
important issues. One of the options to generate 
the cryptographic keys is to invoke a well-known 
Diffie-Helmann protocol [14] which establishes 
a common key in an open communication chan-
nel. However, another interesting approach stems 
from artificial intelligence, where artificial neural 
networks for cryptographic key exchange proce-
dure [8, 11] can be applied. This method is based 
on the phenomenon of two networks’ synchro-
nization by their mutual learning [10] described 
first by Kanter and Kinzel [9]. 

Artificial neural network learning scheme 
with incorporated teacher variant relies on the 
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availability of sample inputs supplemented with 
corresponding expected results of the network. 
These impulses are then sent to the taught net-
work which in sequel calculates its output value. 
Next, the latter result is compared with the ex-
pected result and the weights are modified ac-
cordingly so that the outcome obtained from 
the network matches the expected results. In the 
two networks mutual learning variant is slightly 
different. First of all, no input-output set is con-
structed at the preliminary step. Here, the input 
and output values are generated during the learn-
ing process. Both networks receive the same in-
puts and compute their output values. Then they 
exchange their respective calculated results. Both 
networks treat the received results of the counter-
part network as the expected values and modify 
their weights according to the commonly adopted 
learning algorithm. 

Upon imposing some restrictions on the net-
works weight and their topological structure [15], 
which is called TPM network (the same for both 
networks), this learning procedure leads to the 
synchronization of the common weights in both 
networks. Such a process is called network syn-
chronization in which a pair of adjusted weights 
change together yielding different but the same 
pairs of vectors representing in fact the desired 
cryptographic keys. An important fact is that 
learned/taught networks have a dynamic influ-
ence on each other by exchanging their outputs. 
Evidently, the other “eavesdropping” network 
can intercept communications and gain access 
to the inputs and outputs of the self-taught net-
works. However, this can be only passively ac-
complished since the outputs of the third network 
are not fed-back to the synchronization process of 
the other two parties involved. 

Consequently, as experimentally verified 
and statistically proven [10, 11] the passive net-
work is not able to establish compatible weights 
as quickly as two actively synchronizing net-
works. Such a phenomenon of establishing 
compatible network weights during their mutual 
learning can be therefore exploited in cryptog-
raphy to construct relatively secure [12, 16] and 
computationally feasible key exchange protocol 
[2]. This new method based on TPM networks’ 
synchronization forms an alternative to the com-
putationally difficult key exchange protocol 
problem which originally is tackled upon apply-
ing various advanced NP-contemporary number 
theory techniques [14].

OBJECTIVE AND METHODOLOGY

The synchronization of TPM network is a 
stochastic process, which depends on the initial 
network weights and input values generated at 
each step of learning. This article discusses the 
impact of the distribution of the initial weights 
values drawn on their initial compatibility. The 
uniform and normal distributions with differ-
ent parameters are applied and examined here in 
our examples with TPM networks having differ-
ent topological parameters. For each variant of 
the distribution involved and TPM parameters 
fixed 5000 simulations of the selection of initial 
weights are carried out, which results in the total 
number of simulations amounting to 375 000. To 
evaluate the compatibility of the initial weight the 
cosine [15] and the modified Euclidean measures 
[4] are used.

TREE PARITY MACHINE

Tree Parity Machine (TPM) is a neural net-
work used in cryptographic key exchange proto-
col [10, 18]. It has specific topological structure 
and its operational modus vivendi somehow dif-
fers from the conventional neural networks. In-
deed, the TPM network consists of two layers of 
artificial neurons and in fact it is a feed-forward 
network. In the first layer it has K (K = 1, 2, …) 
artificial neurons constructed in accordance with 
the McCulloch – Pitts model [7, 13]. These neu-
rons have not overlapping inputs, which imposes 
on TPM network a tree-like structure. In the sec-
ond layer, the network has always one artificial 
neuron with a specific action, namely it multiplies 
the results of the first layer neurons. Lastly, the 
outcome of the output neuron is the result of the 
entire TPM network. To illustrate the above, a 
specific topology of the TPM structure is shown 
in the Figure 1.

Fig. 1. TPM structure
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Each neuron of the first layer has an  inputs 
with values either –1 or 1. The synaptic weights 
are integers ranging within the interval from –L to 
L. The summation value of the neuron  is calcu-
lated without any bias, according to the following 
formula:
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Each neuron of the first layer has an 𝑁𝑁 inputs with values either -1 or 1. The synaptic weights 
are integers ranging within the interval from −𝐿𝐿 to 𝐿𝐿. The summation value of the neuron 𝑖𝑖 is 
calculated without any bias, according to the following formula: 

𝜑𝜑𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1 . 

The activation function (acting on the summation) of these neurons is a bipolar threshold 
function, which at the discontinuity is assumed to return the value 1 for argument 0. Therefore 
𝜎𝜎𝑖𝑖 ∈ {−1, 1}, for 𝑖𝑖 = 1, 2, … , 𝐾𝐾 and the whole TPM’s output as a product of the first layer 
neuron outputs is either −1 or 1. The Tree Parity Machine has tree-like structure and indicates 
the parity of negative outputs of first layer neurons. 
TPM network learning is performed according to the algorithm, which de facto constitutes an 
extension of the network learning with the teacher. More specifically, we deal here with the 
case of two networks’ mutual learning (and in fact teaching), in which both networks play 
simultaneously a role of a teacher and a role of a student, interchangeably. The two networks 
involved iteratively exchange their results as a teacher for the second network and modify 
their weights as a student. The corresponding network weights are updated according to one 
of three adopted methods: the anti-Hebbian rule, Hebbian rule or Random Walk rule:  

1. Anti-Hebbian rule – in this case neuron weights are modified if the outputs of both 
networks are different. Weights’ modification complies here with the following 
formula: 

wij
(t+1) = wij

(t) xijσi. 
2. Hebbian rule – here weights are modified if the both TPM’s results are equal. In this 

method, weights are modified according to: 
wij

(t+1) = wij
(t) + xijσi. 

3. Random Walk rule – similar to normal Hebbian rule, where modification occurs only 
if both results of the networks are equals. The respective weights’ adjustments 
depends here only on the input signal determined by the formula below: 

wij
(t+1) = wij

(t) + xij. 
During entire learning process only the weights of these neurons are modified, for which the 
outcome is equal to the result of the whole network. If the new weight value wij

(t+1) is greater 
than 𝐿𝐿, it is replaced by 𝐿𝐿 and similarly if the weight value is less than −𝐿𝐿, it’s substituted by 
– 𝐿𝐿, accordingly. As a result of such learning procedure, upon some number of steps, the TPM 
reaches a compatible weight values i.e. a synchronization state. If the weights’ modification is 
carried out according to either Hebbian or Random Walk rule the corresponding synchronized 
weights have the same values. On the other hand if anti-Hebbian method is applied then these 
values are opposite upon synchronization is reached.  
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to return the value 1 for argument 0. Therefore, 
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, for i = 1, 2, …, K and the whole 
TPM’s output as a product of the first layer neu-
ron outputs is either –1 or 1. The Tree Parity Ma-
chine has tree-like structure and indicates the par-
ity of negative outputs of first layer neurons.

TPM network learning is performed accord-
ing to the algorithm, which de facto constitutes 
an extension of the network learning with the 
teacher. More specifically, we deal here with the 
case of two networks’ mutual learning (and in fact 
teaching), in which both networks play simulta-
neously a role of a teacher and a role of a student, 
interchangeably. The two networks involved it-
eratively exchange their results as a teacher for 
the second network and modify their weights as a 
student. The corresponding network weights are 
updated according to one of three adopted meth-
ods: the anti-Hebbian rule, Hebbian rule or Ran-
dom Walk rule: 
1)  Anti-Hebbian rule – in this case neuron 

weights are modified if the outputs of both 
networks are different. Weights’ modification 
complies here with the following formula:

.
2) Hebbian rule – here weights are modified if 

the both TPM’s results are equal. In this meth-
od, weights are modified according to:

.
3) Random Walk rule – similar to normal Heb-

bian rule, where modification occurs only if 
both results of the networks are equals. The 
respective weights’ adjustments depends here 
only on the input signal determined by the for-
mula below:

.

During entire learning process only the 
weights of these neurons are modified, for which 
the outcome is equal to the result of the whole 
network. If the new weight value  is 

greater than L, it is replaced by L and similarly 
if the weight value is less than –L, it’s substituted 
by –L, accordingly. As a result of such learning 
procedure, upon some number of steps, the TPM 
reaches a compatible weight values i.e. a syn-
chronization state. If the weights’ modification is 
carried out according to either Hebbian or Ran-
dom Walk rule the corresponding synchronized 
weights have the same values. On the other hand 
if anti-Hebbian method is applied then these val-
ues are opposite upon synchronization is reached. 

Once two TPM networks are synchronized, 
they remain in this state regardless of their fur-
ther learning and although each pair of respective 
weights of such networks changes along next iter-
ations, they remain however equal in pairs. Only 
the network with an even number of neurons in 
the first layer may achieve the internal results 
configuration in which no weight will change in 
the neurons. This is possible when all hidden neu-
rons have output equal to –1. There is therefore 
no internal neuron with the same result as the en-
tire network so there is no weight modification.

KEY EXCHANGE PROTOCOL

The outlined above phenomenon of TPM syn-
chronization can be used to construct the crypto-
graphic key exchange protocol. More specifically, 
let A and B be two trusted parties who intend to 
establish the cryptographic key in order to en-
crypt their further communication. The proposed 
protocol proceeds along the following steps:
0. Parties A and B determine (e.g. through an 

open communication channel) the parameters 
K, N and L describing the TPM network to-
pology and the range of interval to which the 
weights of a learned networks belong. In addi-
tion, both parties establish a common learning 
method. Of course, all such information is also 
available to the potential attacker (called here 
the third party).

1. Each of the parties (i.e. A and B) create their 
own TPM, with secretly randomly chosen re-
spective weights wA and wB.

2. Parties A and B obtain the same, publicly 
known input vector  (also available to the third 
party) and calculate their corresponding TPM 
results τA and τB.

3. The Parties A and B exchange the calculated 
results of their networks (via open channel).
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4. Party A treats the result τB (received from B) 
as the expected result for its network, and B 
proceeds similarly with the value τA (obtained 
from A). Thus Parties A and B play simulte-
neously the roles of teachers and students.

5. Both Parties A and B modify the weights of 
the corresponding networks according to the 
mutually pre-selected learning method.

6. This process continues until the synchroniza-
tion status is reached.

Once the two networks are synchronized, the 
entire learning process is completed, otherwise, 
it is continued upon returning to the step 2. The 
synchronization moment (i.e. adjusting the pairs 
of compatible weight vectors) can be accurately 
detected during the simulation program, which 
has access to the weight vectors of two networks 
involved. In practice the phenomenon of TPM 
network weights synchronization for crypto-
graphic key exchange protocol yields weights 
which are in turn to be confidential. Therefore, 
the communication partners do not identify ex-
actly a full synchronization moment. However, 
they can observe the exchanged results of both 
networks and once they coincide on different in-
put vectors both TPM networks, such networks 
are considered as already synchronized. More 
specifically, sufficiently long exchange of con-
sistent networks’ results for random inputs indi-
cates that two networks have consistent weights 
[18]. We experimentally test here the answer to 
the question of time synchronization for different 
TPM parameters.

RESULTS

As it turns out, the time required to synchro-
nize the TPM networks depends on their size. 
The latter involves the number of neurons in the 
hidden layer, the number of input values entering 
each of these neurons, the number of weights and 
finally the weight variation interval. Evidently, 
the number of input values is equal to the number 
of weights involved. All of the above-mentioned 
values are the network parameters K, N and L. In 
general, the larger the network is, the longer the 
synchronization takes [15]. As shown in the pre-
vious works [5] the distribution of TPM network 
synchronization time has a characteristic left-
hand histogram. The third quartile is nearly half 
of the longest observed synchronization time and 
this relationship remains valid for networks with 

different topologies [3, 4]. Thus, it is important to 
focus on the fast synchronizations, which occur 
more frequently than long ones. Obviously, the 
synchronization time is crucial for the design of 
cryptographic key exchange protocol using TPM 
networks. TPM synaptic weight are assumed to 
be integers within the interval [–L, L]. At the be-
ginning of synchronization procedure, both net-
works weights are chosen randomly. An initial 
choice and randomly generated inputs determine 
the time of network learning. The closer to each 
other both weight vectors are, the more identical 
results both networks generate and consequently, 
they synchronize faster. On the other hand, any 
initial choice of distant weights may result in a 
long synchronization time increasing the risk of 
taking over the cryptographic key by the unde-
sired third party.

The analysis of TPM networks with the ini-
tial weights randomly chosen from the uniform 
distribution and normal distribution with differ-
ent values of the standard deviation is performed 
in this paper below. Due to the symmetry of in-
terval [–L, L], where the corresponding weights 
belong, the mean value of normal distribution is 
continuously equal to 0. The standard deviation s 
depends on the network parameter L and the cor-
responding cases analyzed here include:
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values of 𝐿𝐿 are tested, namely 𝐿𝐿 ∈ {2,4,6,8,10} and for a standard deviation 𝑠𝑠 = 𝐿𝐿
5 only values 
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‖𝑤𝑤𝐴𝐴‖∙‖𝑤𝑤𝐵𝐵‖, 
and the previously used Euclidean distance reads as: 

𝑑𝑑𝑑𝑑𝑠𝑠𝑑𝑑(𝐴𝐴, 𝐵𝐵)𝑡𝑡 =
max

1≤𝑗𝑗≤𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝐴𝐴,𝐴𝐴)𝑗𝑗− 𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝐴𝐴,𝐴𝐴)𝑡𝑡

max
1≤𝑗𝑗≤𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝐴𝐴,𝐴𝐴)𝑗𝑗− min
1≤𝑗𝑗≤𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡(𝐴𝐴,𝐴𝐴)𝑗𝑗
, 

where max
1≤𝑗𝑗≤𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
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the distance is calculated in relation to the lowest and highest possible values, accordingly. 
The lowest distance is simply 0, whereas the biggest can be obtained when the corresponding 
weights have opposite values 𝐿𝐿 and −𝐿𝐿. It can be calculated as follows: 
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This distribution parameter has an impact 
on the frequency with which the weights’ values 
are closer to 0 which in turn influences the initial 
weight vectors compatibility.

We tested networks with K = 3 and N∈{11, 
50, 100}. Parameter L is related to a standard de-
viation s and to the uniform and the normal dis-
tribution with s = L. Its value belongs to the fol-
lowing set L∈{2, 3, 4, …, 10}. For the normal 
distribution with s = L/2 only even values of L 
are tested, namely L∈{2, 4, 6, 8, 10} and for a 
standard deviation s=L/5 only values for L which 
are divisible by 5 are considered i.e. L∈{5, 10}. 
This gives 75 possible variants of parameters of 
examined networks. Each network is tested with 
random initial weights draw for 5000 times and 
in other experiment with 5000 synchronizations. 
This results in a total number of 750 000 cases.

In order to analyze the initial weights compat-
ibility a cosine function is applied, originally used 
by Kanter et al. [15] and recently used in modified 
reversed Euclidean distance [3, 4]. The cosine is 
calculated according formula:
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Table 1 presents the results obtained for TPM 
with the respective topological parameters 3-50-L, 
where L∈{2, 3, 4, …, 10} and the weights are 
drawn according to either uniform and normal 
distributions with the standard deviation s = L. 
The average values of cosine and Euclidean dis-
tance depending on the maximal possible dis-
tance from 5000 randomly chosen initial weights 
vectors are presented in the Table 1.

The tests performed for different TPM net-
works yielded similar results. Within a fixed value 
of N, and upon increasing L the average distance 
of initial weights slightly decreases and the co-
sine variations get close to zero without a visible 
regularity. Given the above observation, a further 
analysis focuses here on the Euclidean distance.

The choice of the specific distribution (from 
which the initial weights are drawn) results in the 
variation of distances between the initial drawn 
weights. In particular, the normal distribution 
renders a closer pairs of weights as opposed to 

the uniform one. Table 2 shows the average dis-
tances with respect to the maximal distance for 
5000 random draws of the initial weights for all 
analyzed networks. Both uniform and normal dis-
tributions (with standard deviation equal to L or  
L/2) are presented below.

Standard deviation of the used normal dis-
tribution depends on the interval to which the 
weights of the tested network belong. The dis-
tances between randomly generated weight vec-
tors are scaled here to the maximal possible dis-
tance appearing in a tested TPM network of a 
given fixed structure. Consequently, all generated 
results are similar and independent from different 
topological parameters. 

Reducing the standard deviation leads to the 
further alignment of the initial weight vectors. In-
deed, the similarity of the results described above 
permits to average them, which in turn is sum-
marized in Table 3. The latter visibly indicates 
that the distance between the weights’ vectors is 
reduced in percentage. 

In case when the weights are drawn according 
to a normal distribution the respective average 
distance decreases. For the standard deviations 
either L or L/2 or L/5, the corresponding calcu-
lated distance is respectively 41.4%, 32.6% and 
39.8% of the maximal distance and what is in-
teresting this percentage occurs regardless of the 
size of the TPM network.

CONCLUSIONS

Having comparing the uniform and normal 
distributions with respect to the weights selection 
we observe that the latter favors the drawn weight 
values closer to the mean. Therefore, the distance 
between weight vector decreases. It is interest-

Table 1. Results for TPM with the topological parameters 3-50-L

TPM UNIFORM NORMAL

K N L COS DIST COS DIST

3 50 2 -0.001754 0.499937 -0.001107 0.456752

3 50 3 -0.000102 0.470752 -0.001080 0.432801

3 50 4 0.002459 0.455380 0.002562 0.419601

3 50 5 0.001128 0.446826 -0.000657 0.412462

3 50 6 0.001672 0.440176 0.001753 0.406837

3 50 7 0.000207 0.436068 0.002923 0.403342

3 50 8 -0.001378 0.432749 -0.001870 0.401124

3 50 9 -0.000908 0.429989 0.000275 0.398876

3 50 10 0.000699 0.427757 0.000988 0.397211



Advances in Science and Technology Research Journal  Vol. 9 (26) 2015

142

ing that expressing this distance, in relation to the 
maximal possible distance, yields similar results 
for networks with different parameters and thus 
renders the result independent from the size of 
the examined networks. The weights which are 
drawn closer to each other at the initial phase of 
the synchronization process should shorten the 
network synchronization time. This issue will be 
analyzed in a further research.
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